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A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of 
t~e strain. This theory starts wi.th the statistical theory of the atomic jump frequency as developed by 
Vme:l:'ard. The ~aramet~r deter~g the effect of strain on diffusion is related to the changes in the inter­
atomIC forces wIth stram. Companson of the theory with published experimental results for the effect of 
pressure on diffusion shows that the experiments agree with the form of the theoretical equation in all cases 
within experimental error. 

I. INTRODUCTION 

SINCE the diffusion rate in a crystal depends on the 
atomic interaction energy, and since this energy 

depends on the interatomic distances, it is to be ex­
pected that the diffusion coefficient of a migrating 
species will be altered by a strain superimposed on the 
crystal. Experimental evidence shows that the change 
in thF diffusion coefficients resulting from strains can be 
consilderable. Uniaxial elastic strain can increase the 
self-diffusion coefficient by as much as a factor of two l 

and large hydrostatic pressures may decrease the self­
diffusion coefficient by as much as an order of 
magnitude.2- 6 

The theory of the effect of pressure on diffusion has 
been examined on the basis of the dynamic theory of 
diffusion.6,7 In this theory, the pressure effect is repre­
sented by a parameter that is a function of the normal 
mode vibrations of the atoms in the crystal, and the 
diffusion coefficient is an exponential function of the 
pressure. 

1 T. Liu and H. G. Drickamer, ]. Chern. Phys. 22, 312 (1954). 
! Norman H. Nachtrieb, Wright Air Development Center 

Technical Report No. 55-68 (unpublished) . 
8 ]. Petit and N. H. Nachtrieb, ] . Chern. Phys. 24, 1027 (1956). 
'W. lost and G. Nehiep, Z. physik . Chern. 34, 348 (1936). 
6 Norman H. Nachtrieb, Henry A. Resing, and Stuart A. Rice, 

]. Chern. Phys: 31, 135 (1959). . 
4 Stuart A. Rice, Phys. Rev. 112, 804 (1958). 
7 Stuart A. Rice and Norman H. Nachtrieb, ]. Chern. Phys. 31 

139 (1959). ' 

The dynamic theory of diffusion was developed as an 
alternative to the absolute rate theory of diffusion 
since it was believed that the absolute rate theory de~ 
pended on the postulate that the jumping atom spends 
a long time at the top of the potential barrier. However, 
it can be shown that the theory of the jump frequency 
can be developed without reference to such a postulateS 
by considering the motion of a representative point in 
phase space. The jump frequency then depends on the 
rate at which phase points move over the potential 
maximum in configuration space, and not on the length 
of time the phase points spend at the maximum. In 
view of this situation, it is of interest to investigate the 
effect of strain on diffusion in terms of the statistical 
rate theory. 

The statistical rate theory of diffusion in strained 
crystals as developed in this paper shows that the dif­
fusion coefficient is an exponential function of strain 
and that the strain effect can be represented by a pa~ 
rameter that is a function of the interatomic forces 
The rate theory, therefore, has an adva:ntage over th~ 
dynamic theory in two respects: First, the effect of 
strain on diffusion in different materials can be corre­
lated with the interatomic potential energy, and second 
the interatomic forces provide a basis on which t~ 
calculate the magnitude of the strain effect for different 
diffusion mechanisms. Accordingly, the possibility pre-

8 George H. Vineyard, ]. Phys. Chern. Solids 3, 121 (1957). 
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sents itself of deciding among alternative diffusion 
mechanisms from a comparison of the results of experi­
m~nts on the effect of diffusion in strained systems with 
theoretical calculations. Such a program would be con­
siderably more difficult in the framework of the dynamic 
theory. . 

The general equation for the diffusion coefficient for 
the flow of a single species in an isotropic solid may be 
written 

(1) 

where D is the diffusion coefficient, A is the lattice 
parameter, n is the concentration of carrier defects, r 
is the jump frequency, and a is a constant that is deter­
mined by the crystal structure. In the following sec­
tions expressions are derived for the effect of homo­
geneous static strains on the jump frequency and va­
cancy concentration. The resulting equations are put 
into a form in which comparisons can be made with 
existing experimental data. 

II. DEPENDENCE OF JUMP FREQUENCY 
ON STRAIN 

According to the statistical theory of rate processes, 
the jump frequency is determmed by the ratio of two 
configurational integrals, one referring to the activated 
state and the other referring to the normal state. In 
analyzing the effect of strain on the jump frequency, the 
formulation of the rate process theory in solids given by 
VineyardS is used, in which the jump frequency is given 
in terms of these integrals by 

(2) 

where ·k is Boltzmann's constant, T is the temperature, 
and tp is the potential energy of the system as a function 
of all the coordinates of all the atoms in the crystal. 
The integral in the numerator of Eq. (2) is evaluated 
over a hypersurface q in the configuration space such 
that the surface passes through the point corresponding 
to the diffusing atom at its activated position with all 
other atoms at their equilibrium positions. The hyper­
surface is also required to be perpendicular to contours 
of constant potential energy in the configuration space. 
The hypersurface defined in this manner divides the 
configuration space into two symmetric parts. The 
integral in the denominator is evaluated over the config­
uration volume A of one of these symmetric parts. 

Equation (2) was derived for the case of an unstrained 
crystal. However, it is applicable to strained crystals if 
the potential energy tp is taken to be a function of the 
six strain components EafJ as well as the atomic co­
ordinates q,. A similar procedure has been used by Born9 

in an analysis of the statistical mechanics of crystal 

9 Max Born, Proc. Cambridge Phil. Soc. 36, 160 (1940). 

lattices. Thus, the potential energy in Eq. (2) is given by 

(3) 

where q. represents the set of all atomic coordinates 
and EafJ represents the set of six independent strain 
components. . 

The potential tp can be expanded as a Taylor series 
in the strains about the point of zero strain with the 
result that 

a,fJ 

+ L CafJpuEafJEpu+"', (4) 
a,/J,p,(f 

where the coefficients CafJ and CafJpu are defined by 

( 
Otp) CafJ= -- , 

OEafJ aj,O 

(5) 

(6) 

The subscripts indicate that the derivatives are evalu­
ated when the strains are zero and the coordinates 
have the value qj. 

Substituting Eq. (4) into Eq, (2) gives the jump 
frequency in terms of the strain: 

f e-'P(q;,OllkT exp(-~ L CafJEafJ)dA, (7) 
A kTa,fJ 

where terms of order higher than the first have been 
ignored. It will)e shown later that the first-order con­
tribution of the strain to the jump frequency depends 
on the difference of the average value of CafJ evaluated 
near the normal configuration and near the acti­
vated configuration, and on similar differences 
in the averages of CafJpu, etc. It is extremely difficult 
to give an a priori estimate of the relative magnitudes 
of these differences. At any rate, for small enough 
strains the first-order terms predominate and the higher 
order terms can be neglected. It will be seen later that 
the form of experimental results is adequately de­
scribed by considering only the first-order terms in the 
strains. For zero strain, Eq. (7) gives the jump fre­
quencyas 

(8) 


